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a CERMICS, École Nationals des Ponts et Chaussées, 6&8 Avenue Blaise Pascal, Cité Descartes,
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Abstract

We present a new method for the computation of electronic excited states of molecular systems. This method is
based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions
of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83–114]. Our algorithm,
dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration
model, which can be interpreted as an approximate excited state of the molecule.

The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear
Hylleraas–Undheim–MacDonald type principle: the energy of the approximate excited state is an upper bound to the
true excited state energy of the N-body Hamiltonian.

To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for
transition states between reactants and products on potential energy surfaces. We propose here a general method for the
deformation of paths which could also be useful in other settings.

We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the
unsatisfactory behaviours which are sometimes observed when using the latters.

Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state
potential energy surface of the H2 molecule.
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Electronic excited states play an essential role in various phenomena of high interest, such as photo-
induced chemical reactions, femtosecond spectroscopy, or laser control of molecular processes. Whereas
most of the currently used electronic structure models, notably the Hartree–Fock and the Kohn–Sham
models, are rigorously founded and quite successful in the description of ground states, their approach
to excited states is questionable [1]. The method which seems to be best-adapted to this issue is to date
the multiconfiguration self-consistent field (denoted by MCSCF in the following) method [2–4]; loosely
speaking, this approach leads to variational models which fill the gap between the mean-field Hartree–Fock
and the N-body Schrödinger models [3]. However, the definition of what actually is an excited state for a
non-linear theory such as MCSCF is still unclear; it is indeed observed that non-linear electronic structure
models have a lot of spurious critical points that cannot be interpreted as approximations of excited states.
In other words, solving the equations of the model is clearly not sufficient to obtain a state which really
approximates some excited state. In addition, even if we leave aside the above mentioned difficulty, the
practical calculation of MCSCF critical points is difficult and some numerical algorithms available to date
do not always converge. Even if they converge, the interpretation of the obtained solution is not always
clear. For all these reasons, the computation of electronic excited states remains one of the main challenges
of modern Quantum Chemistry.

In [5], it is emphasized that those difficulties are likely to stem from the currently used definitions of
MCSCF excited states that are not correct, for they do not fully take into account the non-linearity of
the model. The purpose of [5] was to provide a more rigorous definition of MCSCF excited states. Our goal
in this paper is to show that this theoretical definition can actually be used in practice, at least for the com-
putation of the first excited state.

The paper is organized as follows. In Section 1, we introduce the MCSCF description of electronic struc-
tures. In Section 2, we present the new definition of MCSCF excited states and compare it to other defini-
tions currently used in Computational Chemistry. Finally, in Section 3, we describe in details our new
algorithm and present numerical results for the case of two-electron systems.
1. MCSCF approximation of the time-independent Schrödinger equation

In this section, we recall some classical properties of the N-body time-independent Schrödinger equation,
and briefly present the MCSCF approximation. We refer the reader to [4–8] for more details.

Let us consider a molecular system consisting of N electrons, and of M nuclei of positive charges
z1, . . . ,zM. The nuclei are supposed to be correctly described by a classical model and are represented by
pointwise charges clamped at positions �x1; . . . ;�xM ð�xm 2 R3 for 1 6 m 6 MÞ. This is the so-called Born–
Oppenheimer approximation [9]. The electrons are described by the N-body quantum Hamiltonian (written
in atomic units, see, e.g. [8])
HN ¼
XN
i¼1

� 1

2
Dxi þ V ðxiÞ

� �
þ

X
16i<j6N

1

xi � xj
�� �� ; ð1Þ
which acts on normalized electronic wavefunctions Wðxi; . . . ; xN Þ 2 L2
aððR3ÞN Þ, kWkL2 ¼ 1. The subscript a

indicates that, due to the fermionic nature of the electrons, one solely considers wavefunctions W which
are antisymmetric under permutations of variables
8r 2 SN ; Wðx1; . . . ; xN Þ ¼ eðrÞW xrð1Þ; . . . ; xrðNÞ
� �
almost everywhere. Here and below, SN denotes the set of the permutations of the indices {1, . . . ,N} and
e(r) the signature of the permutation r. Finally, V is the electrostatic potential generated by the nuclei
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V ðxÞ ¼ �
XM
m¼1

zm
x� �xmj j .
In what follows, we denote by Z ¼
PM

m¼1zm the total nuclear charge which is an integer as we work in
atomic units.

For the sake of clarity, we do not take the spin into account in the first two sections of the article, but the
following arguments can be straightforwardly adapted to the case of spin-dependent wavefunctions. The
spin will be reintroduced in Section 3, in which numerical examples on real molecular systems will be
provided.

The operatorHN is self-adjoint in L2
aððR3ÞN Þ, with domain H 2

aððR3ÞN Þ and form domain H 1
aððR3ÞN Þ. When

Z > N � 1 (an assumption that we will make throughout this article), it is known [10] that its spectrum
r(HN) has the form
rðHN Þ ¼ EN ¼ k1 6 k2 6 � � � 6 kn 6 � � �f g [ R;þ1½ Þ;
where (ki)iP 1 are eigenvalues strictly below and which converge to R, the bottom of the essential spectrum.
The N-body ground state energy is the lowest eigenvalue of HN also defined by
EN ¼ inf hW;HNWi; W 2 H 1
aðR3N Þ; kWkL2aðR3N Þ ¼ 1

n o
. ð2Þ
The eigenfunctions corresponding to the ki > EN are called excited states. Both the ground states and the
excited states obviously solve the time-independent Schrödinger equation
HNW ¼ kiW. ð3Þ

Recall that the excited state energies kd, d P 1, can be obtained by the Rayleigh–Ritz principle
kd ¼ inf
dimðW Þ¼d

max
W2W ;

kWkL2¼1

hW;HWi; ð4Þ
where the first infimum is taken over all d-dimensional subspaces W of the domain of HN.
The Schrödinger equation is a model of extremely high accuracy, except for heavy atoms for which

core electrons are relativistic. For systems involving a few (say today six or seven) electrons, a direct
Galerkin discretization of problem (3) is possible; such a technique is referred to as Full CI in Com-
putational Chemistry. For larger systems, this direct approach is out of reach, due to the excessive
dimension of the space R3N on which the wavefunctions are defined, and problem (3) must then be
approximated. To date, the most commonly used approximations are the Hartree–Fock model (see,
e.g. [11]) on the one hand, and the Kohn–Sham model (see, e.g. [12,13]) on the other hand. Both of
them have been designed for the calculation of ground states and are not really adapted to the calcu-
lation of excited states. On the contrary, the MCSCF approximation can be applied to both ground
and excited state calculations.

The MCSCF method is based on the following remark:
L2
aððR3ÞN Þ ¼

N̂

n¼1

L2ðR3Þ;
an equality which can be explicited in the following way. Consider an orthonormal basis (ui)16 i<+1 of
L2ðR3Þ. It is well known that the sequence ðui1 � � � � � uiN Þ16ik<1 forms an orthonormal basis of
L2ððR3ÞN Þ ¼ �N

n¼1L
2ðR3Þ, where by definition
ui1 � � � � � uiN

� �
ðx1; . . . ; xN Þ ¼ ui1ðx1Þ � � �uiN ðxN Þ.
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An orthonormal basis of the subspace L2
aððR3ÞN Þ of L2ððR3ÞN Þ can then be obtained by simply considering

the antisymmetrized products ðui1 ^ � � � ^ uiN Þ16i1<���<iN<þ1, where ui1 ^ � � � ^ uiN denotes the so-called Slater
determinant of the uik ’s:
ðui1 ^ � � � ^ uiN Þðx1; . . . ; xNÞ ¼
1ffiffiffiffiffi
N !

p
X
r2SN

eðrÞui1ðxrð1ÞÞ � � �uiN ðxrðNÞÞ ¼
1ffiffiffiffiffi
N !

p detðuik ðxlÞÞk;l.
In other words, every antisymmetric wavefunction W is an infinite linear combination of such Slater
determinants
W ¼
X

16i1<���<iN<þ1
ci1...iNui1 ^ � � � ^ uiN ;
the sum being convergent in L2
aððR3ÞNÞ. Remark that kWkL2 ¼ 1 is then equivalent to the conditionP

i1<���<iN
jci1...iN j

2 ¼ 1.
An integer KP N being fixed, we now consider the subset of L2

aððR3ÞN Þ consisting of the wavefunctions

W which are finite linear combinations of the
K
N

� �
Slater determinants constructed from a set of K ortho-

normal functions (u1, . . . ,uK) of L
2ðR3Þ, i.e.,
W ¼
X

16i1<���<iN6K

ci1...iNui1 ^ � � � ^ uiN . ð5Þ
The MCSCF approach is a variational method for approximating (3) in which both the coefficients ci1...iN
and the functions (u1, . . . ,uK) are variational parameters. Let us mention incidently that the MCSCF meth-
od differs from the Configuration–Interaction (CI) method [14], for in the latter, only the coefficients ci1...iN
are variational parameters (in a CI calculation, the functions (u1, . . . ,uK) are issued from a previous Har-
tree–Fock or Kohn–Sham calculation and are kept fixed). When there is no ambiguity, we shall use the fol-
lowing notation:
W ¼
X

I�f1;...;Kg; Ij j¼N

cIUI ;
where WI ¼ ui1 ^ � � � ^ uiN , when I ¼ fi1 < � � � < iNg.
Following our purpose to describe the MCSCF approach, we introduce the manifold
MK
N ¼ ðc;UÞ 2 R

�
K
N

�
� H 1ðR3Þ
� �K

;
X

i1<���<iN

ci1...iN
�� ��2 ¼ 1;

Z
R3

uiuj ¼ dij

( )
; ð6Þ
where we have used the notation
c ¼ ðci1���iN Þ 2 R
K
Nð Þ; U ¼ ðu1; . . . ;uKÞ 2 H 1ðR3ÞK
(we arrange the ci1...iN in a column vector c using for instance the lexicographical order). Let us note that the
functions (u1, . . . ,uK) are now requested to have a H1 regularity, in order to ensure that the MCSCF energy
is well defined. The MCSCF energy functional that we denote here by EK

N , is defined by the formula
EK
N ðc;UÞ ¼ hWðc;UÞ;HNWðc;UÞi; Wðc;UÞ ¼

X
16i1<���<iN6K

ci1...iNui1 ^ � � � ^ uiN ð7Þ
and the MCSCF ground state energy then reads
EK
N ¼ inf

MK
N

EK
N . ð8Þ
An explicit expression of the non-linear functional EK
N can be found in [5, Eq. (6)].
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Let us point out that, whereas the Schrödinger energy functional W ´ ÆW,HNWæ is quadratic, the
MCSCF energy functional is not. Consequently, the MCSCF equations, namely the first order stationarity
conditions for the critical points of EK

N on the manifold MK
N , will be non-linear. More precisely, EK

N is not
quadratic with respect to the orbitals ui�s, but it is indeed quadratic with respect to the cI�s since
EK
N ðc;UÞ ¼

X
I;J

cIcJ hUI ;HNUJ i ¼
X
I ;J

cIcJ ðHUÞIJ ;
where (recall that UI ¼ ui1 ^ � � � ^ uiN , when I ¼ fi1 < � � � < iNg)

ðHUÞIJ ¼ hUI ;HNUJ i. ð9Þ� � � �
In other words, HU is the
K
N

� K
N

matrix of the quadratic form associated with HN when it is re-

stricted to the
K
N

� �
-dimensional space VU = Span(UI). It can be seen that the MCSCF equations take

the following general form [6,5]:
ci � D
2
þ V

� �
ui þ

P
16j;k;l6K

bijkl ðujukÞ � 1
jxj

� �
ul ¼

PK
j¼1

kijuj; 1 6 i 6 K;

HUc ¼ bc;

8><>: ð10Þ
where the bijkl are real numbers which can be expressed in terms of c. The first line of (10) is in fact a system
of K non-linear coupled partial differential equations accounting for the stationarity conditions with respect
to U; the symmetric matrix (kij) is the Lagrange multiplier matrix associated with the orthonormality con-
straints on U. The numbers ci are called the occupation numbers and satisfy 0 6 ci 6 1 (see [5] for details). A
compact form of the first equations of (10) is given in [5]. The second equation is a simple eigenvalue prob-
lem and conveys the stationarity condition with respect to c.

When K = N, W is a single Slater determinant and one recovers the celebrated Hartree–Fock approxi-
mation [11,15,16]. In this case, (10) can be written in a simpler way, using the invariance by rotation of
the orbitals. The difference between the Hartree–Fock and the exact (non-relativistic) ground state energy
Ecorr ¼ EN
N � EN
is called the correlation energy [3], for it originates from correlations between the positions of individual
electrons, which are averaged out by the mean-field Hartree–Fock scheme. Estimating the correlation en-
ergy is essential for reliably calculating many of the properties of molecules [7,1], in particular in situations
where the Hartree–Fock method fails. Since
lim
k!þ1

EK
N ¼ EN ;
the MCSCF method is a method of choice for computing the correlation energy.
Mathematically, it is known that a minimizer of (8) exists, and that the associated wavefunction con-

verges to the ground state of HN as K goes to infinity [17,6,5]. A minimizer of (8) is usually numerically
computed by a Newton-like algorithm, sometimes improved by a trust-region method [18–20,4,21–26].
For the Hartree–Fock model, efficient numerical methods based on combinations of fixed-point and opti-
mization strategies are available [8]. Unfortunately, such algorithms are specifically designed for solving the
Hartree–Fock problem and seem to be difficult to adapt to the more general MCSCF setting.

Remark that in (5), all the Slater determinants that can be built with the functions ui are taken into ac-

count. Most often, this cannot be done in practice for
K
N

� �
is too large a number. It is then necessary to

resort to an additional approximation consisting in dividing the electrons into two groups, the inactive elec-
trons that are supposed to be correctly described by a Hartree–Fock type model, and the active electrons
that mostly contribute to the correlation energy, and in using the MCSCF methodology for the active



78 É. Cancès et al. / Journal of Computational Physics 212 (2006) 73–98
electrons only. This is the so-called Complete Active Space Self-Consistent Field (CASSCF) approach [27].
All what we shall mention here can be straightforwardly adapted to the CASSCF setting. In particular, the
first excited state of a CASSCF model can be computed using a slightly modified version of the numerical
algorithm presented in Section 2.3.
2. On the definition of MCSCF excited states

Numerical investigations show that the MCSCF energy EK
N possesses a lot of critical points on the man-

ifold MK
N , and it is not obvious to characterize, among all these critical points, those which can be regarded

as approximate excited states. As explained below, the following three properties can be considered as nec-
essary conditions for ðc;UÞ 2 MK

N being an approximate jth excited state:

(a) First order condition: (c,U) is a critical point of the energy functional EK
N , that is to say a solution of

the MCSCF equations (10).
(b) Second order condition: (c,U) has a Morse index1 equal to j or, saying differently, its total hessian

matrix (with respect to both c and U) has j negative eigenvalues.
(c) Non-linear Hylleraas–Undheim–MacDonald type theorem: the energy of (c,U), denoted as kKjþ1 satisfies
1 Re
kKjþ1 P kjþ1 and lim
k!1

kKjþ1 ¼ kjþ1; ð11Þ

where we recall that kj+1 is the (j + 1)th eigenvalue of the N-body Hamiltonian HN.
The first condition (a) is very natural and simply means that the approximate excited state is a stationary
state of the model. The second condition (b) is also natural; it has been proposed and studied in Quantum
Chemistry in [28,23]. Since HU defined in (9) is the second derivative of the functional EK

N with respect to c

only, a consequence of (b) and (10) is that c is at most the (j + 1)th eigenvector of the Hamiltonian matrix
HU. In other words, b in (10) is at most the (j + 1)th eigenvalue ofHU, but may correspond to a lower eigen-
value [28,23].

The third condition (c) is a generalization of the result claiming that, in the linear case, the eigenvalue of
a quadratic form restricted to a subspace is greater than the corresponding true eigenvalue on the whole
space. This result, obvious consequence of the Rayleigh–Ritz principle (4), is usually called the Hyller-
aas–Undheim–MacDonald (HUM) theorem [29,30] in Quantum Chemistry.

We are aware of two different definitions of approximate excited states in Quantum Chemistry. They are
discussed and compared for instance in [28,31,24]. We will show in the following section that they do not
always provide solutions satisfying the conditions (a)–(b)–(c). The mathematical definition of [5] which we
shall use to construct our new method will then be presented in Section 2.2. This definition allows to con-
struct specific MCSCF states satisfying the three conditions (a)–(b)–(c).
2.1. Two definitions currently used in Quantum Chemistry

2.1.1. The standard definition of MCSCF excited states

Let us start with the standard definition which is still mostly used today, and is based on the idea that

condition (c) should be enforced. To this end, we denote by lK
d ðUÞ; d ¼ 1 . . .

K
N

� �
, the eigenvalues of the

matrix HU, which has been defined in (9). Let us recall that this is the matrix of the quadratic form
call that the Morse index of a critical point is the number of negative eigenvalues of the Hessian matrix.
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associated with the N-body Hamiltonian HN, restricted to the space span ðui1 ^ � � � ^ uiN Þ, where
U = (u1, . . . ,uK) is a fixed set of orbitals. Then, one deduces from the Rayleigh–Ritz principle (4) that
kd 6 lK
d ðUÞ
for all K and d such that 1 6 d 6
K
N

� �
, and any fixed set of orbitals U 2 H 1ðR3ÞK such that

R
R3uiuj ¼ dij.

This inequality suggested the mostly used current definition of approximate excited state energies
[3,4,19,32,18,22]
lK
d ¼ inf

U2H1ðR3ÞKR
R3

UUT¼IK

lK
d ðUÞ; ð12Þ
that is to say, quoting [4], ‘‘the MCSCF energy results from minimizing the appropriate eigenvalue of the
Hamiltonian matrix with respect to orbital variations’’ . It can be shown [5] that such a definition indeed
satisfies the Hylleraas–Undheim–MacDonald type condition (c), namely
lK
d P kd and lim

k!1
lK
d ¼ kd .
This property has been the main argument in favour on the definition (12) in many chemical papers. How-
ever, we believe that this commonly admitted definition of MCSCF excited state energies is the source of
various difficulties of both practical and theoretical natures, since the two other conditions (a)–(b) are not
always satisfied. Reservations of the same kind have been expressed in [28,31,24,37].

Indeed, solving problem (12) amounts to minimizing the dth eigenvalue of a matrix depending on a set of
parameters U. This is known to be a challenging task and no completely satisfactory numerical method ded-
icated to solving such problems is available to date, except for very special cases (for instance when the
matrix linearly depends on the parameters, see, e.g. [33]). In fact, we shall see in the following paragraph
that the algorithms which are currently implemented in the Quantum Chemistry simulation packages using
definition (12) [19,34,20,32,18,4] are not fully adapted to this issue.

Serious difficulties can occur when optimizing lK
d ðUÞ, due to a possible loss of differentiability of this

function in case of degeneracies. As an illustration, let us simply mention a celebrated example due to Rel-
lich and reported in [35]: consider the family of 2 · 2 matrices ðAðx; yÞÞðx;yÞ2R2 defined by
Aðx; yÞ ¼
� sin x sin y

sin y sin x

� �
ð13Þ
with eigenvalues
k1ðx; yÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðxÞ þ sin2ðyÞ

q
and k2ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðxÞ þ sin2ðyÞ

q
.

The second eigenvalue k2 degenerates and is not differentiable at its minimum (x0,y0) = (0,0). Moreover, it
is easily seen that there exists no critical point of the form ð0; 0; vÞ 2 R2 � S1, of the associated energy
ðx; y; vÞ 2 R2 � S1 7!hAðx; yÞv; vi.

Coming back to our main context, this exactly means that the conditions (a)–(b) are not necessarily ful-
filled when the definition (12) is used: it could be that there does not exist any stationary state with energy
lK
d when a degeneracy occurs.
Let us now make some comments on the numerical methods used to solve (12). Following [4,19,32,18]

and loosely speaking, the general form of the numerical algorithms currently used to calculate the (d � 1)th
excited state can be summarized as follows:
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1. start with some (c,U) obtained for instance from a previous Hartree–Fock or Configuration–Interaction
calculation;

2. compute the matrix HU;
3. find c 0 as the dth eigenvector of this matrix;
4. this c 0 being fixed, minimize the energy with respect to U to obtain a new U 0;
5. replace (c,U) by (c 0,U 0) and return to step 2.

The main difficulty with this so-called two-step method is that the energy is not necessarily decreasing
during the computation; it can in fact oscillate, as this can be easily seen when this algorithm is applied
to the following toy problem [5]: find the first excited state for the energy functional
~Eðc;UÞ ¼ cT
� sinU 0

0 sinU

� �
c

with c 2 S1 and U 2 ]�p,p[ (an oscillation between U = �p/2 and U = p/2 is obtained).
This phenomenon is called root flipping in Quantum Chemistry. It is well known and observed in practice

in MCSCF calculations [36,34,32,28,31,24]. Many solutions have been proposed to avoid this drawback.
First, the computation is always done in a restricted set by adding special requirements like space symme-
try, which need to be intuited before starting the optimization. This choice seems to deeply influence the
behaviour of the algorithm. This is not satisfactory from a numerical point of view: a method should
not depend on the space on which the optimization is made and such a restriction should only be used
as a tool to speed up the convergence or simplify the computation. Then, instead of (12), the average of
different eigenvalues lK

d ’s is often considered [36,34]. Although this allows to avoid oscillations in many
cases, this obviously results in a loss of accuracy and cannot be considered as a general solution for the
problems described above concerning the definition (12).

Even when the definition (12) provides a critical point and no root-flipping is observed, the interpre-
tation of the so-obtained N-body wavefunction is unclear. For the special case of two-electron systems
(H2 molecule and Helium-like atoms), our numerical results, presented in Section 3.3, seem to show that
the state which is obtained by solving (12) without imposing any space symmetry is not an appropriate
approximation of the first excited state. Indeed, it does not have the right space symmetry properties (in
practice, the space symmetry is imposed during the computation to obtain the right approximate excited
state). This issue has been raised for the first time in [37]. It means that (12) cannot be considered as a
relevant definition in general: imposing that c is a specific eigenvector of HU, may lead to unphysical
results.

2.1.2. The DALTON method

The issues raised by the definition (12) have already been described and studied in details in [28,23,24,31]
by the team of the DALTON software [38]. They proposed a different definition of excited states which
consists in just imposing that conditions (a)–(b) hold, neglecting (c). In their approach, a Newton-like meth-
od is used to compute the state under consideration, imposing that the Hessian matrix has exactly d � 1
negative eigenvalues [28,23,24,31,25,39,26]. This algorithm is extremely well-behaved and efficient. This
is a one step method in which the orbitals ui�s and cI coefficients are optimized simultaneously. It does
not suffer from root-flipping and always provides a critical point with the right Morse index.

However, one might ask why any critical point having the right Morse index should be interpreted as an
approximate excited state, that is to say a state which is close to the true eigenfunctions of the N-body oper-
ator. In our simulations for the first singlet excited state of the H2 molecule (see Section 3.3), we obtain two
critical points with Morse index one. One of them turns out to be a good approximation of the first excited
state, whereas the other one is a spurious state which has no physical interpretation (in fact, we believe that
it is the solution of (12)). Moreover, it apparently sometimes happens that the state obtained by DALTON
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does not satisfy the condition (c): it can have an energy which is below the correct one.2 This is not surpris-
ing: the functional EK

N has a lot of critical points of a given Morse index, and there is no reason for them to
have an energy above the eigenvalues ofHN. In [28], an additional condition expressed in terms of the linear
response is added but it is rarely checked on the solution found out by the algorithm.

As a conclusion, none of these two methods provides a state which for sure satisfies (a)–(b)–(c). We shall
now present the result of [5] which does provide such a solution. Indeed, one might say that it provides the
variational interpretation which is missing in the DALTON method.

2.2. A new definition of MCSCF excited states

In this section, we present the new definition of MCSCF excited states introduced in [5]. Let be
2 H.J
Bd�1 ¼ f ðSd�1Þjf 2 C0ðSd�1;MK
N Þ; f ðxÞ ¼ ðc;UÞ ) f ð�xÞ ¼ ð�c;UÞ

	 

. ð14Þ
The definition of an excited state energy used in [5] is
kKd ¼ inf
B2Bd�1

sup
ðc;UÞ2B

EK
Nðc;UÞ ð15Þ
and the following result has been established

Theorem 1 (Existence of MCSCF excited states [5]). Assume Z > N � 1 and 1 6 d 6
K
N

� �
. Then there

exists a critical point (cd,Ud) of the energy EK
N on MK

N , with a Morse index lower than or equal to d � 1, and

which satisfies EK
N ðcd ;UdÞ ¼ kKd . Moreover, kKd satisfies
kd 6 kKd 6 lK
d ð16Þ
and therefore
lim
k!1

kKd ¼ kd . ð17Þ
This result shows that contrarily to what occurs with the definition (12), one always obtains with (15) a
critical point which is a solution of the MCSCF equations (10) and satisfies the conditions (a)–(b)–(c).
In particular, one knows that the so-obtained energy kKd is always an upper bound of the true energy.
But (16) is a non-linear version of the celebrated Hylleraas–Undheim–MacDonald theorem which does
not depend on the index of c = (cI) as an eigenvector the Hamiltonian matrix HU. This is the total Hessian
matrix which has the right Morse index, and not necessarily the one taking the variations with respect to c

only.

Recall that lK
d has been defined in (12). We have no general criterion to decide whether the strict inequal-

ity kKd < lK
d holds or not. Generally speaking, one can guess that it holds in practice when, due to a problem

of degeneracy, no critical point exists at the level lK
d (kKd is always a critical value by Theorem 1). More spe-

cifically, we believe that it holds for the special case of the H2 molecule when the two-body Hamiltonian is
not restricted to a particular symmetry, as suggested by our computations presented in Section 3.3 and
claimed in [37]. For the Rellich example defined above (13), a simple calculation indeed shows that, with
obvious notations, �1 = k2 < l2 = 0.

Remark. In a non-interacting system, i.e., when the interaction term
X
16i<j6N

1

jxi � xjj
.Aa. Jensen, private communication.
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in the expression (1) of HN is turned off, one can see that for any d 6
K
N

� �
, kKd ¼ kd (i.e., the MCSCF and

the Schrödinger excited state energies coincide). Moreover, the critical point which is found in Theorem 1 is
precisely in this case the dth eigenfunction of the N-body Hamiltonian.
2.3. A new method for the computation of the first excited state

Let us emphasize that the definition (15) is valid for all the excited states for which 1 6 d 6
K
N

� �
. How-

ever, it has probably not much practical interest for large d due to its complicated formulation (when d > 2,
one has to deform surfaces of dimension d � 1). For the first excited state d = 2, it can indeed be trans-
formed into a totally new and simple computational method that we present in this section.

Let us first clarify the structure of the set B1 defined in (14). Using the parametrization t 2 [0; 2] !
(cos(pt), sin(pt)) of S1, we see that a function satisfying the conditions of (14) can be written
t 2 ½0; 2�7!ðcðtÞ;UðtÞÞ 2 MK

N with c(1 + t) = �c(t) and U(1 + t) = U(t). Since EK
N is even with regards to c

which means
EK
N ð�c;UÞ ¼ EK

N ðc;UÞ;

we obtain
sup
t2½0;2�

EK
N ðcðtÞ;UðtÞÞ ¼ sup

t2½0;1�
EK

NðcðtÞ;UðtÞÞ.
Therefore, we can rewrite (15) as
kK2 ¼ inf
ðc;UÞ2MK

N

inf
c2Cðc;UÞ

sup
t2½0;1�

EK
N ðcðtÞÞ

( )
; ð18Þ
where
Cðc;UÞ ¼ c 2 C0 ½0; 1�;MK
N

� �
; cð0Þ ¼ ðc;UÞ; cð1Þ ¼ ð�c;UÞ

	 

.

Notice that the inf–sup problem which is in brackets in (18) is a mountain-pass problem (between (c,U) and
(�c,U)), similar to those encountered in molecular simulation in the search for transition states between
reactants and products on potential energy surfaces [40,41]. To compute the term in brackets, one thus
has to deform paths, as this is usually done in the latter setting.

We now conjecture that when K is large enough, a global minimizer of the MCSCF energy ð�c; �UÞ is also a
minimizer of the outer minimization in (18). Therefore, we are able to simplify the resolution of problem
(18) as follows: we clamp both ends of the trial paths at ð�c; �UÞ and ð��c; �UÞ, respectively, and solve the
mountain pass problem
kK2 ¼ inf
c2C0 ½0;1�;MK

Nð Þ
cð0Þ¼ð�c;�UÞ;cð1Þ¼ð��c;�UÞ

sup
t2½0;1�

EK
N ðcðtÞÞ. ð19Þ
We have no proof of the equality (19) but it will be fulfilled provided there exists a path linking ð�c; �UÞ and
an actual minimizer of the outer minimization of (18), along which the energy does not exceed kK2 . It is in-
deed likely to be the case, at least for K large enough. Notice that (19) mimics a well-known formula which
allows, in the linear case, to obtain the second eigenfunction W2 of HN, as a mountain pass point between
W1 and �W1, where HNW1 = k1W1.

In practice, solving a mountain-pass problem is rather demanding in terms of CPU time since one has to
deform paths. Therefore, we shall choose a not too tight convergence criteria to stop the path optimization
step. The state of highest energy on the final path is then used as initial guess in a Newton-like procedure to
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solve (10). Our algorithm to compute the first excited state can therefore be summarized as follows (details
will be given in the following section):

1. use a Newton-like method to compute a ground state ð�c; �UÞ of the MCSCF energy;
2. find an initial continuous path c0 satisfying c0ð0Þ ¼ ð�c; �UÞ and c0ð1Þ ¼ ð��c; �UÞ;
3. deform c0 to decrease the highest energy along the path, keeping the end points at ð�c; �UÞ and ð��c; �UÞ;
4. when the highest point on the deformed path has a small enough gradient, switch to a Newton-like

method to converge to the closest critical point.

We have found many algorithms in the literature for the optimization of paths (often applied to the sim-
ulation of chemical reactions on potential energy surfaces) [40,42–48,41,49–51], some of them being quite
peculiar in our opinion. The method that we propose below for the deformation of paths, and which seems
to give good results on our problem, is of general concern and could therefore also be useful for some other
problems.

2.4. Solving the mountain pass problem: a method of deformation of paths

Let us first point out that solving a mountain pass problem is by no means equivalent to finding a saddle
point somewhere ‘‘between’’ two minima. The example of the search of the first excited state of the H2 mol-
ecule (Section 3.3.1) is an illustration of this statement. In this example indeed, the optimal path obtained
with our algorithm contains two saddle points of different energies; an algorithm of saddle point localiza-
tion could converge toward the one of lower energy, and thus underestimate the mountain pass energy.

The best way for properly solving a mountain pass problem is in fact to deform paths. A mathematical
study of an algorithm of this type can be found in [52,53]. Our method has been inspired by the one de-
scribed in these references, but it is not identical (see below). In this section, we present it in the following
abstract setting: solve the mountain pass problem on the energy surface defined by the functional E on the
Riemann manifold M between the two points M0 and M 0

0 of M, or in other words, find a minimizer of
inf
c2C0ð½0;1�;MÞ

cð0Þ¼M0;cð1Þ¼M 0
0

max
t2½0;1�

EðcðtÞÞ.
Like in [42,44,45,50,51], the main idea is to sample a given path linking M0 and M 0
0 with a sequence of

points M0,M1, . . . ,MN+1 of M, such that MNþ1 ¼ M 0
0. During the optimization process, the number N

of points used to represent the current path is not necessarily fixed. In our method, we associate with each
sequence (tk,Mk)06 k6N+1 where 0 = t0 < t1 < � � � < tN < tN+1 = 1 are real numbers, a uniquely defined
continuous path c : ½0; 1� ! M which satisfies c(tk) = Mk. This is done by selecting once and for all, a con-
venient interpolation scheme. A possible choice is to take for c(t) some piecewise geodesic curve on the
manifold M. Simplest interpolation schemes can also be chosen, for in practice, Mk and Mk+1 will be close
together. In some cases, spline-type interpolation functions can also be used.

A sequence (tk,Mk)06 k6N+1 being given, one can use the gradient field of the functional E to deform the
associated continuous path. A naive approach consists in simply moving each Mk in the direction opposite
to the gradient with a step-length ak [54]. Remark that since the new point M 0

k has to lay on the (curved)
manifold M, one has to make precise the statement ‘‘in the direction opposite to the gradient’’. The most
intrinsic rule is to move Mk on the geodesic curve which spurts out from Mk in the direction opposite to the
gradient [55]. A simpler alternative is first to move Mk in the tangent space, then to project the so-obtained
point on the manifold (we shall use this method in our problem).

When this naive procedure is iterated, each point Mk falls down in one of the valleys of the function. In
[42,44,45], it is suggested to circumvent this problem by linking the points (Mk)06 k6N+1 with strings or
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elastic bands. In some situation, one can also project the gradient in some direction which is fixed or not
[56]. The convergence to the saddle point then depends deeply on the new parameters introduced (strength
of the elastic bands, direction of the projection, etc.).

We use a simpler but apparently more efficient solution, similar to ideas of [52,53,57–60]. It consists in
first computing the path c 0 associated with ðtk;M 0

kÞ, and then finding new points ðt0k;M 00
kÞ which are better

distributed in some sense on the (uniquely defined) continuous path c 0. We have observed that for stability
reasons, the points need to be redistributed after each minimization step. We use in addition the following
rule: the larger the difference between the maximum of the energy on c and EðMkÞ, the smallest the step-
length ak in the direction opposite to the gradient. This simple trick helps in preventing the points Mk from
falling down in the valleys (see Fig. 1).

We have applied the above method to several test cases (notably to the ones described in [49]) and we
have observed a convergence to the saddle point in all the cases, when the number N of points is large en-
ough. We have also checked on these test cases that switching to a Newton-like method once the mountain-
pass algorithm has found a state close enough to the saddle point, is an efficient strategy. In the following
section, we apply this method to the calculation of the first MCSCF excited state.
3. Computation of the first excited state of two-electrons systems

3.1. The MCSCF approximation for two-electron systems

3.1.1. Spin symmetry: singlet and triplet states

In order to be able to simulate real molecular systems, we now need to reintroduce the spin variables. As
the N-body Hamiltonian HN and the spin operators S2 and Sz (see, e.g. [61]) commute, it is convenient to
search for eigenfunctions of HN that also are eigenfunctions of S2 and Sz. For two-electron systems, the
situation is particularly simple. There are only two types of wavefunctions which are eigenfunctions of both
S2 and Sz, namely the so-called singlet and triplet states.

A singlet state is a wavefunction of the form
Wsðx; r; y; r0Þ ¼ wðx; yÞjabiðr; r0Þ;

where w(x,y) is symmetric in L2ðR3 � R3Þ, i.e., such that w(y,x) = w(x,y). The antisymmetry is carried by
the spin function |abæ(r,r 0), which is defined for (r,r 0)2{|›æ,|flæ} · {|›æ,|flæ} by
jabiðr; r0Þ ¼ 1ffiffiffi
2

p ðaðrÞbðr0Þ � bðrÞaðr0ÞÞ;
Fig. 1. The deformation method.
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where
aðj "iÞ ¼ 1; aðj #iÞ ¼ 0; bðj "iÞ ¼ 0; bðj #iÞ ¼ 1.
A triplet state takes the form
Wtðx; r; y; r0Þ ¼ wðx; yÞaðrÞaðr0Þ;

where w(x,y) is antisymmetric in L2ðR3 � R3Þ, i.e., w(y,x) = �w(x,y) (the spin function a(r)a(r 0) is symmet-
ric and the antisymmetry is carried by the function of the space variables).

For two-electron systems, the MCSCF wavefunctions thus read
w ¼
X

16i;j6K

cijui � uj; ð20Þ
where the K · K matrix C = (cij) is symmetric for singlet states and antisymmetric for triplet states. The
condition kwkL2 ¼ 1 also reads iCi = 1 where iCi = tr(CCT)1/2.

3.1.2. The MCSCF model in finite dimension

For numerical simulations, one most often resorts to a Galerkin approximation: each ui is expanded on
a finite basis ðvlÞ16l6Nb

of H 1ðR3Þ functions specially designed for electronic structure calculations, the so-
called atomic orbitals. This approximation is referred to as the Linear Combination of Atomic Orbitals
(LCAO) approximation in the Computational Chemistry literature (see, e.g. [62]). Let S be the matrix de-
fined by
Slm ¼
Z
R3

vlvm
and u = (uli) be the Nb · K coordinate matrix of the functions (ui)16 i6K in the basis ðvlÞ16l6Nb
. The con-

dition
R
R3uiuj ¼ dij also reads uTSu = IK (of course, Nb must be chosen greater or equal to K) and the en-

ergy of a state Ws or Wt, as a function of C and u, has the following expression:
EðC;uÞ ¼ 2trðCTuThuCÞ þ tr ðuCuTÞTWðuCuTÞ
� �

; ð21Þ
where h is the Nb · Nb matrix defined by
hlm ¼
1

2

Z
R3

rvl � rvm þ
Z
R3

V vlvm
and where W is the linear map associated with the tensor W defined by
W lmjk ¼
Z
R3�R3

vlðxÞvmðyÞvjðxÞvkðyÞ
jx� yj dx dy;
i.e., for any Nb · Nb matrix X
½WðX Þ�lm ¼
XNb

j;k¼1

W lmjkX jk. ð22Þ
Remark that expression (21) is valid for both singlet and triplet states, but that the matrix C appearing in
this formula is symmetric for singlet states and antisymmetric for triplet states.

For the sake of brevity, we now only deal with the singlet state case. The manifold of admissible singlet
states is
M ¼ fðC;uÞ 2 MðK;KÞ �MðNb;KÞ; CT ¼ C; trðCTCÞ ¼ 1; uTSu ¼ IKg;
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where M(K,K 0) denotes the set of K · K 0 real matrices. The MCSCF equations (i.e., the stationarity condi-
tions of the MCSCF energy (21) on the manifold M) then take the form:
ðuThuC þ CTuThuÞ þ uTWðuCuTÞu ¼ bC;

huCCT þWðuCuTÞuC ¼ SuK;

(
ð23Þ
where b 2 R and where K is a K · K symmetric matrix.

3.1.3. The reduced model

The problem can be dramatically simplified by using a rotation invariance property [63]. Indeed, using
the constraint uTS u = IK, we see that EðC;uÞ only depends on X = uCuT
EðC;uÞ ¼ 2trðSX ThX Þ þ tr X TWðX Þ
� �

. ð24Þ
Notice now that for any rotation matrix U 2 OKðRÞ, one has X = uCuT = u 0C 0u 0T with u 0 = uU and
C 0 = UTCU. Since u 0 obviously satisfies the constraint u 0TSu 0 = IK, we see that the energy functional E
is invariant under the action
U � ðC;uÞ ¼ ðUTCU ;uUÞ ð25Þ

of the orthogonal group OKðRÞ. Now, since C is symmetric and real, there exists a U 2 OKðRÞ such that
C 0 = diag(c1, . . . ,cK). Up to a rotation of the orbitals, u 0 = uU, this means that there is no restriction in

assuming that the matrix C is diagonal. When using this reduced model (which is not an approximation),
the manifold of admissible singlet states reads
Mred ¼ SK�1 �WNb
K ð26Þ
with
WNb
K ¼ fu 2 MðNb;KÞ; uTSu ¼ IKg;
and the energy functional is given by
Eredðc;uÞ ¼ EðCsðcÞ;uÞ

where Cs(c) = diag(c1, . . . ,cK). Lastly, the MCSCF equations become:
HðuÞ � c ¼ b � c;
huðCsðcÞÞ2 þWðuCsðcÞuTÞuCsðcÞ ¼ SuK

(
ð27Þ
with
HðuÞij ¼ 2uT
i huidij þ uT

i Wðuju
T
j Þui.
We notice that the use of the reduced model indeed corresponds to choosing a gauge for the invariance
under the action of the orthogonal group OKðRÞ. We also point out that the discrete permutation group
still acts on the reduced manifold Mred, by simply changing the order of the orbitals. A same kind of reduc-
tion is done in [63–66] and [5, Appendix]. Triplet states can also be simplified with the same kind of argu-
ment since for any antisymmetric matrix C, there exists a rotation matrix U such that UTCU = C 0 =
diag(Ci, . . . ,CP) if K = 2p, and C 0 = diag(C1, . . . ,Cp, 0) it K = 2p + l, where
Ci ¼
1ffiffiffi
2

p
0 ci
�ci 0

� �
.

At this stage, some important comments have to be made. It is crucial to notice that when working with the
reduced model, we do not restrict the associated set of two-body wavefunctions, but we change the geometry
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of the manifold on which the optimization of paths has to be made. For a minimization problem, the restric-
tion to the reduced manifold (26) has no theoretical consequence. But for the new variational method giving
the first excited state, Theorem 1 is not valid anymore.

It could be that a path in the non-restricted manifold M cannot be continuously projected onto the re-
duced manifold Mred. Saying differently, it could be that it is not possible to choose a gauge continuously
along the path. To give a simple example of such a situation when K = 2, let be ðc;uÞ 2 Mred such that
c = (1,0) and u = (u1,u2) for some orthogonal vectors u1 and u2 in WNb

K . We now introduce
(c 0,u 0) = U Æ (c,u) with c 0 = (0,1) and u 0 = (u2,�u1), U being the permutation matrix
U ¼
0 �1

1 0

� �
.

We also introduce C = Cs(c) and C 0 = Cs(c 0) the diagonal matrices associated with c and c 0. Of course,
ðC;uÞ 2 M and ðC0;u0Þ 2 M represent the same wavefunction W = u1 � u1 and one can indeed find a con-
tinuous path linking the two points of M, and on which the energy is constant:
EðCðtÞ;uðtÞÞ ¼ EðC;uÞ ¼ Eredðc;uÞ . By (25), it suffices to take, for t 2 [0; 1],
ðCðtÞ;uðtÞÞ ¼ UðtÞ � ðC;uÞ with UðtÞ ¼
cosðpt=2Þ � sinðpt=2Þ
sinðpt=2Þ cosðpt=2Þ

� �
.

However, along this path, C(t) is not necessarily diagonal. Indeed, none of the points on this path (except
the end points) belong to Mred. It is even easy to prove that it is not possible to link (c,u) and (c 0,u 0) in the
reduced manifoldMred by a path on which the energy is constant, whereas this is trivial in the original man-
ifold M.

The same problem will appear in any computation using the reduced model: in the reduced manifold
Mred, it is impossible to link by a continuous path on which the energy is constant, two MCSCF states
differing only by the order of their orbitals. Therefore, when the reduced model is used to solve the
mountain pass problem between the two MCSCF ground states ð�c; �uÞ and ð��c; �uÞ, it might be impossible
to obtain the first excited state as the highest saddle point along the path. This is due to the specific
geometry of the reduced manifold Mred. To obtain the first excited state, one might have to permute

the orbitals of one of the end points of the path. On the other hand, the reduced model allows to signif-
icantly decrease the number of variables, a huge advantage from the numerical point of view. In addition,
the results obtained within the reduced model are most often easily interpreted. For these reasons, we
shall therefore describe our main algorithm within the reduced model framework. The practical difficul-
ties inherent to this choice will be commented in Section 3.3, in which we provide and analyse numerical
results for the H2 molecule.

3.2. Description of the algorithm

We only deal with the reduced model of the singlet state. We shall make use of the following interpola-
tion rule: a discrete path on Mred ¼ SK�1 �WNb

K being given as a finite sequence (tk,(c
k,uk))06 k6N+1,

where:

� t0 = 0 < t1 < � � � < tN < tN+1 = 1 are real numbers;
� (ck,uk)06 k6N+1 are points of SK�1 �WNb

K such that ck 6¼ ck+1 for any 0 6 k 6 N,

we define the associated continuous path c 2 C0ð½0; 1�; SK�1 �WNb
K Þ according to
8t 2 ½0; 1�; cðtÞ ¼ ðcðtÞ;uðtÞÞ;

where
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80 6 k 6 N ; 8t 2 ½tk; tkþ1�; cðtÞ ¼ cosðhkðtÞÞck þ sinðhkðtÞÞeckþl
with
eckþ1 ¼ ckþ1�ðckþ1;ckÞck
kckþ1�ðckþ1;ckÞckk ;

hkðtÞ ¼ t�tk
tkþ1�tk

arccosðckþ1; ckÞ

8<:

and
80 6 k 6 N ; 8t 2 ½tk; tkþ1�; uðtÞ ¼ euðtÞ½euðtÞTSeuðtÞ��1=2
with
euðtÞ ¼ uk þ t � tk
tkþ1 � tk

ðukþ1 � ukÞ.
We can now describe our algorithm for computing the first excited state of two-electron systems.

Step A: search for a MCSCF ground state ð�c; �uÞ, i.e., solve

inffEredðc;uÞ; ðc;uÞ 2 SK�1 �WNb

K g

with the Newton algorithm; a convenient initial guess is the Hartree–Fock ground state, which can itself be
obtained by a self-consistent field algorithm [8].

Step B: construction of an initial trial path.

As already mentioned in Section 2.3, we get rid of the outer minimization in (18) and concentrate on
solving
ks;r2 ¼ inf
c2C0ð½0;1�;MredÞ

cð0Þ¼ð�c;�uÞ;cð1Þ¼ð��c;�uÞ

max
t2½0;1�

EredðcðtÞÞ.
Notice that the method presented here can easily be generalized if other end points are chosen for the path
(see the comments at the end of Section 3.1.3).

Let �c1 be the second eigenvector of the Hamiltonian matrix
½Hð�uÞ�ij ¼ 2�uT
i h�uidij þ �uT

i Wð�uj�u
T
j Þ�ui ð28Þ
(note that �c is the ground state of Hð�uÞ and that �c � �c1 ¼ 0). A possible initial trial path is a path on which
the parameter u is constant, for instance
�c0ðtÞ ¼ ðcðtÞ; �uÞ ð29Þ

with cðtÞ ¼ cosðtpÞ�cþ sinðtpÞ�c1, which is indeed the discrete path associated with the sequence
ðC0;u0Þ ¼ ð�c; �uÞ; ðc1;u1Þ ¼ ð�c1; �uÞ; ðc2;u2Þ ¼ ð��c; �uÞ ð30Þ
and t0 = 0, t1 = 1/2, t2 = 1.
A better initial guess can, however, be obtained by random perturbations of that reference path �c0. In

practice, we randomly choose a collection of Nsto states ð�c0j; �u0
jÞ 2 ðvectð�cÞ? \ SK�1Þ �WNb

K such that for
all j = 1, . . . ,Nsto
k�c0j � �c1k 6 ek�c1k and k�u0
j � �uk 6 ek�uk
for a small e, and we consider the Nsto continuous paths �c0jðtÞ obtained by taking ðc1;u1Þ ¼ ð�c0j; �u0
jÞ in (30).

We then select, among the Nsto paths �c0j, the path c0(t) for which the maximal energy max Eredð�c0jð½0; 1�ÞÞ is
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minimum. The above method can obviously be generalized to discrete paths containing more than three
points and can also be used to improve the following Step C (path optimization) when necessary.

We then set m = 0, tk = k/(N + 1), ck0 ¼ ðck;0;uk;0Þ ¼ c0ðtkÞ for 1 6 k 6 N and Emin
0 ¼ Eredð�c; �uÞ

Step C: path optimization.

For the sake of simplicity, we displace the nodes in the direction opposite to the gradient; for this
purpose:

1. we compute for each 1 6 k 6 N, the MCSCF energy at the point ckm ¼ ðck;m;uk;mÞ

Ek
m ¼ EredðckmÞ ¼ ðHðuk;mÞck;m; ck;mÞ

and set

Emax
m ¼ max

16k6N
Ek
m; imax

m ¼ argmax
16k6N

Ek
m;

2. if kEmax
m � Emax

m�1k < g, M times consecutively, we set ðec; euÞ ¼ ci
max
m
m and go to Step D (i.e., we switch to a

Newton-like algorithm);
3. we project the components rcE

redðckmÞ and rS
uE

redðckmÞ of the gradients of the energy at the points ckm on
the tangent spaces of the underlying manifolds:
gkm ¼ rcE
redðck;m;uk;mÞ � ðrcE

redðck;m;uk;mÞ; ck;mÞck;m ¼ 2ðHðuk;mÞ � Ek
mÞck;m

Gk
m ¼ 4PS

uk;m ½S�1ðhuk;mCsðck;mÞ2 þWðuk;mCsðck;mÞðuk;mÞTÞuk;mCsðck;mÞÞ�;

where PS
uk;m is the orthogonal projector of M(Nb,K) on the tangent space T uk;mWNb

K for the scalar product
ÆÆ,ÆæS defined on M(Nb,K) by ÆA,BæS = tr(ATSB), which means

8u 2 WNb
K ; 8Z 2 MðNb;KÞ; PS

uZ ¼ Z � 1

2
uðuTSZ þ ZTSuÞ; ð31Þ

4. for each 1 6 k 6 N, we search for an optimal step 0 6 akm 6 1 and set
dk
m ¼ �fdðbk

mÞakmgkm; Dk
m ¼ �fDðbk

mÞakmGk
m

with

bk
m ¼ Ek

m � Emin
0

Emax
0 � Emin

m

and where fd and fD are well-chosen functions satisfying fd(0) = fD(0) = 0 and fd(1) = fD(1) = 1.
5. we displace the nodes ckm along the descent directions:
�ck;mþ1 ¼ 1

kck;m þ dk
mk

ðck;m þ dk
mÞ;

�uk;mþ1 ¼ eu½euTSeu��1=2 with eu ¼ uk;m þ Dk
m

and introduce the continuous path cm+1(t) associated with the sequence ðk=ðN þ 1Þ; ð�ck;mþ1; �uk;mþ1ÞÞ;
6. we reparametrize the new path cm+1. For this purpose, we define the length of the discrete path by
L ¼
XNþ1

k¼1

k�ck;mþ1 � �ck�1;mþ1k þ k�uk;mþ1 � �uk�1;mþ1k

and search for an increasing sequence 0 ¼ t0 < t1 < � � � < tN 0 < 1 satisfying

8k ¼ 0; . . . ;N 0 � 1; cmþ1ðtkþ1Þ � cmþ1ðtkÞ
�� �� 2 ½L=N ; L=N þ e0�;
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where e 0 is a small enough threshold, and with N 0 as large as possible. We now set tN 0þ1 ¼ 1 and define
the reparametrized path crepmþ1ðtÞ associated with the sequence ðtk; cmþ1ðtkÞÞk¼1...N 0þ1. Finally, since N

0 6¼ N a
priori, we set

ckmþ1 ¼ ðck;mþ1;uk;mþ1Þ ¼ crepmþ1ðk=ðN þ 1ÞÞ;

7. we set m = m + 1 and return to Step C.1.

Step D: use the Newton algorithm, with ðec; euÞ as initial guess, to solve (27).

3.3. Numerical results: the H2 molecule

In this section, we present some numerical results concerning the singlet state of the H2 molecule. We
assume that the two protons of the H2 molecule are located along the x-axis with a distance r, at (�r/
2,0,0) and (r/2,0,0).

In the usual Quantum Chemistry programs, the computation is always restricted to a particular symme-
try space. Indeed, the two-body Hamiltonian H commutes with the symmetry operator T defined as
(Tf)(x,y) = f(�x,�y), for any symmetric f 2 L2

s ðR3 � R3Þ. Therefore, H stabilizes the two eigenspaces of
T which are:
Rg :¼ ff 2 L2
s ðR3 � R3Þjf ðx; yÞ ¼ f ð�x;�yÞg; ð32Þ

Ru :¼ ff 2 L2
s ðR3 � R3Þjf ðx; yÞ ¼ �f ð�x;�yÞg; ð33Þ
and one can search for eigenfunctions in these spaces. In the results presented below, we have used the algo-
rithm presented in Section 3.2 without imposing symmetry restrictions. It turns out that the MCSCF
ground state does have the correct symmetry Rg, but that the first excited state is only close to the symmetry
Ru: in general, due to the non-linearity of the MCSCF method, one cannot be sure that the computed states
will be in the same linear spaces as the true eigenfunctions of the N-body Hamiltonian. Of course, the algo-
rithm of Section 3.2 can be very easily adapted if one wants to restrict the computation of the first excited
state to a particular symmetry.

The results presented in the following sections have been obtained with a Scilab [67] program, interfaced
with a few C routines aiming in particular at speeding up the tensor–matrix products (22). Let us mention
that the overlap matrices S, the core Hamiltonians h, and the bielectronic integral tensors W have been ex-
tracted from Gaussian 98 calculations [68].

We have applied the algorithm described in the previous section to the H2 molecule with the reduced
model presented in Section 3.1.3, for various interatomic distances r. All the energies (in Hartree) reported
in this section include the additional Coulomb repulsion of the two nuclei. We have used for these calcu-
lations the double zeta Dunning�s correlation consistent atomic basis set (cc-pVDZ), for which Nb = 10. It
is composed of two s-type functions and one p-type function (for each space coordinate), which are then
centered at the two atoms. All the computations have been made with K = 4 (i.e., four natural orbitals
and four ci�s coefficients).

The number of iterations in Step C (path optimization) necessary to reach a given convergence criterion
strongly depends on the choice of the initial guess. In that respect, the randomly perturbed initial paths con-
structed in Step B of our algorithm are of better quality than the one given by formula (29).
3.3.1. Analysis of the results for r = 1 Å

Let us first analyze the results for a fixed interatomic distance r = 1 Å. The energy profiles of the succes-
sive paths generated by the path optimization procedure (Step C) have been reported on the same graph
(Fig. 2). One can see that the energy profile of the initial trial path is a single hump and that those of
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Fig. 2. Energy profiles of the successive paths generated by the path optimization procedure (H2 molecule, interatomic distance equal
to 1 Å).
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the iterates progressively turn into a double hump shape. Recall that the energy profiles of the earlier iter-
ates have a rough shape for the initial trial path results from a stochastic local deformation of a reference
path (Step B of the algorithm). The optimization process rapidly smoothes the trial path. Notice that due to
the reparametrization procedure, the graph of EredðcmÞ is not necessarily below the graph of Eredðcm�1Þ.

The optimal path c obtained with our algorithm exhibits a double hump energy profile (see Fig. 3) with
two local maxima. Let us point out that we have run on this case many tests with different stochastic initial
trial paths; we have always obtained a double hump profile at convergence. Our method thus provides two
saddle points of Morse index equal to one (denoted byM andM 0 in Fig. 3). Normally, the first excited state
should be the one of higher energy M 0 but, since we have used the reduced model, we have to be careful
with the interpretation of the so-obtained MCSCF states, as explained in Section 3.1.3. It might be possible
to avoid the first hump by orbital rotations: the so-obtained path then is on the manifold M (of admissible
singlet states) but not on the reduced manifold Mred.

This is indeed the case. We have displayed in Table 1 the results obtained after use of the Newton algo-
rithm, using as initial states the points I (ground state), M and M 0 (saddle points), and P (local minimum).
Recall that the coordinates in the cc-pVDZ basis of the four natural orbitals are the columns of the matrix
u. Looking first at the point I, one easily deduces from the form of uI and the definition of the LCAO basis
that the associated wavefunction is even in L2ðR6Þ, i.e., it belongs to the Rg symmetry space introduced in
(32). It can indeed be written as
WI ¼ 0.9860929u1
g � u1

g � 0.154182u1
u � u1

u � 0.0548179u2
g � u2

g � 0.0122131u2
u � u2

u; ð34Þ
where the orbitals u1
g;u

2
g are even and the orbitals u1

u;u
2
u are odd. This form, which is usually used as an

ansatz for ground state calculations has been automatically obtained by the algorithm.
The local minimum P is also displayed in Table 1. It also belongs to Rg and, more importantly, the first

orbital of I is found at the second place with a reversed sign in P. One might thus expect that a problem due



Fig. 3. Path at convergence and energies (in Hartree) of the different states after convergence of the Newton algorithm (H2 molecule
with r = 1 Å).
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to the specific structure of the reduced manifold Mred (as explained in Section 3.1.3) is encountered, and
that the first hump of the optimal path is indeed an artefact. To demonstrate that this is actually the case,
we have applied a permutation of the orbitals of I by using the following permutation matrix:
3 As
minim
one ca
U :¼

0 0 0 0

�1 0 0 0

0 0 0 �1

0 0 1 0

0BBB@
1CCCA.
We have then run our main algorithm of Section 3.2, but taking as end points of the paths I 0 ¼ U � ð�c; �uÞ
and F ¼ ð��c; �uÞ, i.e., we have changed the order of the orbitals of the point I. The paths generated by the
algorithm have been reported in Fig. 4. Only one hump is obtained at convergence, the state of higher en-
ergy being exactly the point M of the previous calculation. Since I and I 0 can be linked by a path on which
the energy is constant in the full manifold M, the point M is the first MCSCF excited state.3

The expressions of cM and uM for the first excited state M are given in Table 1. It is known in Chemistry
that the true first excited state of the two-body Hamiltonian belongs to the Ru symmetry space. We notice
from the form of the coefficients of uM that the wavefunction WM of our approximate first excited state is
only very close to be a state of the Ru space. This phenomenon is due to the non-linearity of the MCSCF
model. Usually, in Quantum Chemistry one computes the excited states by restricting the whole calculation
to a particular symmetry. In the quantum chemistry packages Molpro [69] or Dalton [38] for instance, the
first excited state is obtained by minimizing the energy in the Ru symmetry space. Computing the norm of
usual in non-convex settings, one cannot be definitely sure that the calculation has converged toward the global solution of the
ax problem; nevertheless, as we performed a lot of calculations, with different initial conditions, and always got the same result,
n think that we have reached the global minmax.



Table 1
Results for the H2 molecule with r = 1Å

cI ¼

0.9860929

�0.1564182

�0.0548179

�0.0122131

26664
37775 uI ¼

�0.3870975 �0.7828663 0.5785016 0.6474821

�0.2203889 �0.3144096 �0.6161753 �0.4532409

�0.0161929 �0.0022539 0.2808267 �0.5622198

1.828E� 10 5.252E� 09 �2.062E� 07 8.258E� 07

�7.916E� 11 �7.147E� 09 2.777E� 07 �0.0000012

�0.3870975 0.7828663 0.5785015 0.6474806

�0.2203889 0.3144096 �0.6161752 �0.4532386

0.0161929 �0.0022539 �0.2808267 0.5622208

2.823E� 10 �4.453E� 09 �2.043E� 07 7.659E� 07

�5.130E� 10 �4.792E� 10 3.214E� 07 6.723E� 08

26666666666666666664

37777777777777777775

cM 0 ¼

0.7038748

0.7038748

�0.894989

�0.333252

26664
37775 uM 0 ¼

�0.4698123 0.0278596 0.6542788 0.5931451

�1.0258021 �0.6809551 �0.6653752 �0.3626093

�0.323337 0.0352589 0.2109307 �0.5902892

5.891E� 11 �3.296E� 11 6.744E� 08 �4.234E� 09

�6.193E� 11 �2.129E� 11 �1.047E� 07 7.772E� 09

�0.0278596 0.4698123 0.6542789 0.5931451

0.6809551 1.0258021 �0.6653753 �0.3626093

0.0352589 �0.0323337 �0.2109307 0.5902892

�2.652E� 11 5.740E� 11 �6.901E� 08 4.458E� 09

9.971E� 11 �9.123E� 11 7.500E� 08 �3.661E� 09

26666666666666666664

37777777777777777775

cM ¼

�0.7086355

0.7051798

0.0166917

0.0166917

26664
37775 uM ¼

�0.2226240 �0.4225444 0.1688094 0.1688100

0.9214741 �1.1049996 0.4331117 0.4331118

�0.0594902 �0.0468558 0.2761505 0.2761512

�2.155E� 09 �2.425E� 09 0.0700146 �0.0700146

�1.250E� 09 4.569E� 09 0.0250928 �0.0250926

�0.4292603 �0.2232948 �0.5111576 �0.5111600

�1.098875 0.9146022 0.1362389 0.1362409

0.0476153 0.561209 0.7893125 0.7893134

3.765E� 09 4.683E� 09 �0.6813492 0.6812500

5.273E� 08 4.317E� 08 �0.2441938 0.2441876

26666666666666666664

37777777777777777775

cP ¼

�0.0662199

0.9955221

�0.0662199

�0.0128695

26664
37775 uP ¼

�0.0494342 0.3820365 1.1451155 0.0000014

�1.4910565 0.2243957 �1.2001197 �9.117E� 07

0.0531034 0.0188249 0.0971197 �6.510E� 07

5.600E� 09 8.392E� 10� 1.599E� 07 �0.7648589

1.439E� 07 �6.942E� 10 �3.630E� 07 0.3206257

0.0494342 0.3820365 �1.1451155 0.0000013

1.4910565 0.2243957 1.2001197 �0.0000012

0.0531034 �0.0188249 0.0971197 9.437E� 07

�9.718E� 09 �2.769E� 09 1.600E� 07 0.7648589

�7.654E� 08 �1.826E� 09 3.383E� 07 �0.3206257

26666666666666666664

37777777777777777775
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Fig. 4. Energy profiles during the path optimization procedure, when the ends points are I 0 ¼ U � ð�c; �/Þ and F ¼ ð�c; �/Þ (H2 molecule,
r = 1 Å).
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the gradient of the states provided by these two programs, we have checked that they are not critical points
of the MCSCF energy. More precisely, the norm of their gradient is only of order 10�4, whereas our states
all have a gradient which has a norm of the order of 10�8. Therefore, adding a symmetry requirement on
the wavefunction may not be compatible with a non-linear model such as MCSCF, for excited states.

Furthermore, we note that the energy ofM corresponds to the first eigenvalue of the matrix H(u) appear-
ing in Eq. (27), as predicted in [37]. This shows that the definition (12) is not relevant: if one does not impose
any restriction on the symmetry of the state, the first excited state of the H2 molecule cannot be obtained as
the state which minimizes the second eigenvalue of the Hamiltonian matrix with respect to the orbitals vari-
ations (definition (12)). Of course, computing its full Hessian matrix, we see that the point M has a Morse
index equal to 1. In fact, by Theorem 1, it satisfies the three conditions (a)–(b)–(c) of Section 2. In partic-
ular, its energy is an upper bound to the true second eigenvalue of the two-body Hamiltonian.

Notice that cM possesses two dominant coefficients. This shows the usefulness of the MCSCF method for
the calculation of excited states: the Hartree–Fock method is not able to correctly describe such a two-
configuration state (recall that the square of the coefficients of c are the weights of the different configura-
tions of the multiconfiguration wavefunction).

Looking now at the stateM 0 in Table 1, we see that it belongs to the Rg symmetry space. But since it has a
Morse index equal to one, it is probably not a good approximation of the second true excited state (which is
known to belong to the Rg space also). Indeed, its energy is �0.621666969 whereas the true second excited
state has an energy which equals approximately�0.363201395 as computed byMolpro [69] and Dalton [38].
M 0 is therefore a spurious state which has no physical interpretation. We notice thatM 0 has an energy which
is the second eigenvalue of the associated Hamiltonian matrix H(u) and which is a local minimum with re-
spect to orbitals variations. We therefore strongly believe that the pointM 0 is indeed a solution of the eigen-
value minimization problem (12) which reads in this context inffk2ðuÞ; u 2 WNb

k g, k2ðuÞ being by definition
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the second eigenvalue ofH(u). This would prove that using (12) with no symmetry restriction indeed leads to
an unphysical result, as already predicted in [37], but we do not have a mathematical proof of this claim. Let
us emphasize that this problem is not due to a degeneracy of the eigenvalue of the matrixH(u) as described in
Section 2.1: even when the optimized eigenvalue ofH(u) is not degenerated, (12) may lead to a wrong result.

3.3.2. The potential energy surface of the H2 molecule

We have applied our algorithm to the reduced model of the H2 molecule for different values of r between
0.5 and 4 Å. We have always obtained optimal paths with two humps. The first excited state always cor-
responds to the smallest hump, the highest one being a non-physical solution of the MCSCF equations.
In Fig. 5, we have displayed the Hartree–Fock and MCSCF ground state potential energy surface
(PES), and the first MCSCF singlet excited state PES (together with the PES of the spurious state M 0) ob-
tained by our method.

When r P 1.5 Å, the optimal path exhibits the same characteristics as for the case r = 1 Å reported
above, but the optimal path is more difficult to obtain than for smaller values of r. We have actually ob-
served that in this range of values of r, the choice of the convergence criteria plays a crucial role in the qual-
ity of the results. Indeed, the difference kEmax

m � Emax
m�1k can be very small during many consecutive iterations,

just as if convergence was reached. But if we run many additional iterations, the algorithm finally escapes
this trap and converges toward the (supposed) optimal path. We have observed that such a sequence of
small changes in Emax

m occurs when the energy profile of the trial path turns from a single hump shape into
a double hump shape (see Fig. 6).

It is very likely that during the optimization process, the state of higher energy along the trial path
passes in the vicinity of an MCSCF critical point with a Morse index two. Since we do not use any
second order information in the method of Section 3.2, it is difficult in this case to find the appropriate
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Fig. 5. Potential energy surfaces (PES) of the H2 molecule.
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Fig. 6. Iterates of ck during the optimization process until convergence, for r = 1.5 Å.
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descent direction for the deformation of the trial path, explaining the behaviour described in Fig. 6.
Many solutions can be proposed to avoid this drawback. One of them consists in using a continuation
method: one injects the optimal path obtained for r = r0 as initial guess in the calculation for r = r0 + dr.
We have used this method to compute the first excited state PES of the H2 molecule for values of r in the
range [1.5; 4].

We have also computed the first excited state of Helium-like atoms (one nucleus of charge Z P 2 and
two electrons). The same behaviour is observed: we obtain double hump paths, the first excited state being
the maximum of the smallest hump. The highest hump provides a spurious MCSCF state having no phys-
ical interpretation and which we believe to be a solution of (12). This is consistent with the results obtained
for the H2 molecule with small interatomic distances.
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